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Introduction & Real-Time Languages

• Features (and non-features) of a real-time system
• Features, defi nitions, scenarios, and characteristics. 

• Components of a real-time system
• Converters, interfaces, sensors, actuators, communication systems, controllers, …

• Software layers of a real-time system
• Algorithms, operating systems, protocols, languages, concurrent and distributed systems.

• Real-time languages criteria
• Mostly high integrity, predictable languages with means for explicit time scopes.

• Examples of actual real-time languages
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Physical coupling

• Physical phenomena

• Measuring temperature
• Thermoelements, thermocouples, Thermoresistors, Thermis-

tors, Noise temperature measurement) and many others …

• Measuring range and relative speed
• Triangulation,Time of fl ight, Intensity, Doppler methods, Interferometry

• Examples: Common acoustical and optical sensors

Summary
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Converters & Interfaces
• Analogue signal chain in a digital system

• Sampling data, aliasing, Nyquist’s criterion, oversampling

• Quantization (LSB, rms noise voltage, SNR, ENOB), Missing codes, DNL, INL

• A/D converters: 
• Integrating (Single- / Dual-slope), Flash, Pipelined, SAR, Tracking, 

Σ-∆ , Σ-∆  DDA, n-th order Σ-∆.

• Examples:
• Fast and simple A/D converter example: National Semiconductor ADC08200

• Multi-channel A/D data logging interface example: National Semiconductor LM12L458

• Simple 8-bit µ-controller example: Motorola MC68HC05, Propeller.

• Complex 32-bit µ-controller examples: AVR32 and Motorola MPC565 (including TPUs).

• General device handling / sampling control / language requirements

Summary
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Time & Space

• What is time? / What is embodiment?
• Approaches by different faculties to understand the foundations of this course

• Interfacing with time
• Formulating local, time-dependent constraints

• Access time, delay processes, timers

• Timeouts, asynchronous transfer of control

• Specifying timing requirements
• Formulating global timing-constraints

• Understanding time-scope parameters (and expressing them in different languages)

• Satisfying timing requirements
• Real-time logic approach & Complex systems approach

Summary
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Asynchronism
• Interrupts / Signals

• Device / system / language / operating-system level interrupt control.

• Characteristics of interrupts and signals.

• Exceptions
• Exception classes / granularity / parametrisation / propagation.

• Resumption and termination, specifi c language issues.

• Atomic Actions
• Defi nition / requirements / failure cases / implementation / error recovery.

• Asynchronous transfer of control / Interrupts in context
• Interrupts and ATC in real-time Java and Ada.

Summary
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Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores, 
conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks, 
simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models

• Addressing modes

• Message structures

• Examples
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Scheduling

• Basic real-time scheduling
• Fixed Priority Scheduling (FPS) with 

Rate Monotonic (RMPO) and Deadline Monotonic Priority Ordering (DMPO).

• Earliest Deadline First (EDF).

• Real-world extensions
• Aperiodic, sporadic, soft real-time tasks.

• Deadlines different from period.

• Synchronized talks (priority inheritance, priority ceiling protocols).

• Cooperative and deferred pre-emption scheduling.

• Fault tolerance in terms of exception handling considerations.

• Language support
• Ada, POSIX
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Resource Control

• Resource synchronization primitives
• Evaluation criteria for resource synchronization methods.

• Atomicity, liveliness, and double interaction.

• Resource reclaiming schemes
• Basic reclaiming 

• Early start algorithm 

• Restriction vector

• Resource reclaiming with task migration

• Real-time resource control
• Policy and run-time issues to be considered.



Summary

© 2019 Uwe R. Zimmer, The Australian National University page 960 of  961  (chapter 10: “Summary” up to page 961)

Summary

Reliability

• Terminology
• Faults, Errors, Failures – Reliability.

• Faults
• Fault avoidance, removal, prevention  Fault tolerance.

• Redundancy
• Static (TMR, NMR) and dynamic redundancy.

• N-version programming, and dynamic redundancy in software design.

• Reduce & Formalise
• Ravenscar profile.

• Real-time logic.
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