
10
Summary

Uwe R. Zimmer - The Australian National University

Real-Time & Embedded Systems 2019

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 951 of 961 (chapter 10: “Summary” up to page 961)

Table of Contents
1. Introduction & Real-

Time Languages
1.1. Features (and non-features)

of a real-time system
1.2. Components of a real-time system
1.3. Real-time languages criteria
1.4. Examples of actual real-time languages:

• Ada, Esterel, Pearl, VHDL, Timed
CSP, Real-time JAVA, POSIX

2. Physical coupling
2.1. Physical phenomena
2.2. Measuring temperature

• Thermoelements, thermocouples,
thermoresistors, thermistors, noise
temperature measurement) and others

2.3. Measuring range and relative speed
• Triangulation, time of fl ight, intensity,

Doppler methods, interferometry

2.4. Examples:
• Time-of fl ight ultrasound, time-of-

fl ight laser, Doppler current profi ler

3. Converters & Interfaces
3.1. Analogue signal chain in adigital system

• Sampling data, aliasing, Nyquist’s
criterion, oversampling

• Quantization (LSB, rms noise voltage,
SNR, ENOB) – Missing codes, DNL, INL

3.2. A/D converters: flash, pipelined-
flash, SAR, R-D, n-th order R-D

3.3. Examples:
• Fast and simple A/D converter example
• Multi-channel A/D data log-

ging interface example

• Simple 8-bit µcontroller example
• Complex 32-bit µcontroller example:

TPU: µprogramming, atomic states,
µengine scheduling, max. latency
analysis, NEXUS debugging port

3.4. General device handling / sampling
control / language requirements

4. Time & Space
4.1. What is time? / What is embodiment?

• Approaches by different faculties to
understand the basis for this course

4.2. Interfacing with time
• Formulating local time-dependent con-

straints – Access time, delay processes,
detect timeouts (in different languages)

4.3. Specifying timing requirements
• Formulating global timing-con-

straints – Understanding time-
scope parameters (and expressing
them in different languages)

4.4. Satisfying timing requirements
• Real-time logic and com-

plex systems approach

5. Asynchronism
5.1. Interrupts / Signals

• Device / system / language / operat-
ing-system level interrupt control

• Characteristics of interrupts and signals

5.2. Exceptions
• Exception classes / granular-

ity / parametrisation / propaga-
tion – Resumption and termina-
tion, specifi c language issues

5.3. Atomic Actions

• Defi nition / requirements / failure
cases / implementation / error recovery

5.4. Asynchronous transfer of con-
trol / Interrupts in context

• Interrupts and ATC in real-
time Java and Ada

6. Synchronization
6.1. Shared memory based synchronization

• Flags, condition variables, sema-
phores, conditional critical regions,
monitors, protected objects.

• Guard evaluation times, nested
monitor calls, deadlocks, simultan-
eous reading, queue management.

• Synchronization and object orientation,
blocking operations and re-queuing.

6.2. Message based synchronization
• Synchronization models, address-

ing modes, message structures
• Selective accepts, selective calls
• Indeterminism in message

based synchronization

7. Scheduling
7.1. Basic real-time scheduling

• Fixed Priority Scheduling (FPS) with
Rate Monotonic (RMPO) Deadline
Monotonic Priority Ordering (DMPO)

• Earliest Deadline First (EDF)

7.2. Real-world extensions
• Aperiodic, sporadic, soft real-time

tasks – Deadlines shorter than period –
Cooperative and deferred pre-emption
scheduling – Fault tolerance in terms
of exception handling considera-
tions – Synchronized talks (priority

inheritance, priority ceiling protocols)

7.3. Language support
• Ada, POSIX (static, off-line an-

alysis mostly) — RT-Java (on-
line, dynamic scheduling)

8. Resource control
8.1. Resource synchronization primitives

• Evaluation criteria for resource
synchronisation methods

• Atomicity, liveliness, and
double interaction

8.2. Resource reclaiming schemes
• Basic reclaiming, early start, and

restriction vector algorithms
• Resource reclaiming with

task migration

8.3. Real-time resource control
• Policy and run-time issues

to be considered

9. Reliability
9.1. Terminology

• Faults, Errors, Failures – Reliability

9.2. Faults
• Fault avoidance, removal, pre-

vention, Fault tolerance

9.3. Redundancy
• Static (TMR, NMR) and dy-

namic redundancy
• N-version programming, and dynamic

redundancy in software design

9.4. Reduce & Formalise
• Ada Ravenscar profile
• Real-time Logic

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 952 of 961 (chapter 10: “Summary” up to page 961)

Summary

Introduction & Real-Time Languages

• Features (and non-features) of a real-time system
• Features, defi nitions, scenarios, and characteristics.

• Components of a real-time system
• Converters, interfaces, sensors, actuators, communication systems, controllers, …

• Software layers of a real-time system
• Algorithms, operating systems, protocols, languages, concurrent and distributed systems.

• Real-time languages criteria
• Mostly high integrity, predictable languages with means for explicit time scopes.

• Examples of actual real-time languages

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 953 of 961 (chapter 10: “Summary” up to page 961)

Physical coupling

• Physical phenomena

• Measuring temperature
• Thermoelements, thermocouples, Thermoresistors, Thermis-

tors, Noise temperature measurement) and many others …

• Measuring range and relative speed
• Triangulation,Time of fl ight, Intensity, Doppler methods, Interferometry

• Examples: Common acoustical and optical sensors

Summary

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 954 of 961 (chapter 10: “Summary” up to page 961)

Converters & Interfaces
• Analogue signal chain in a digital system

• Sampling data, aliasing, Nyquist’s criterion, oversampling

• Quantization (LSB, rms noise voltage, SNR, ENOB), Missing codes, DNL, INL

• A/D converters:
• Integrating (Single- / Dual-slope), Flash, Pipelined, SAR, Tracking,

Σ-∆ , Σ-∆ DDA, n-th order Σ-∆.

• Examples:
• Fast and simple A/D converter example: National Semiconductor ADC08200

• Multi-channel A/D data logging interface example: National Semiconductor LM12L458

• Simple 8-bit µ-controller example: Motorola MC68HC05, Propeller.

• Complex 32-bit µ-controller examples: AVR32 and Motorola MPC565 (including TPUs).

• General device handling / sampling control / language requirements

Summary

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 955 of 961 (chapter 10: “Summary” up to page 961)

Time & Space

• What is time? / What is embodiment?
• Approaches by different faculties to understand the foundations of this course

• Interfacing with time
• Formulating local, time-dependent constraints

• Access time, delay processes, timers

• Timeouts, asynchronous transfer of control

• Specifying timing requirements
• Formulating global timing-constraints

• Understanding time-scope parameters (and expressing them in different languages)

• Satisfying timing requirements
• Real-time logic approach & Complex systems approach

Summary

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 956 of 961 (chapter 10: “Summary” up to page 961)

Asynchronism
• Interrupts / Signals

• Device / system / language / operating-system level interrupt control.

• Characteristics of interrupts and signals.

• Exceptions
• Exception classes / granularity / parametrisation / propagation.

• Resumption and termination, specifi c language issues.

• Atomic Actions
• Defi nition / requirements / failure cases / implementation / error recovery.

• Asynchronous transfer of control / Interrupts in context
• Interrupts and ATC in real-time Java and Ada.

Summary

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 957 of 961 (chapter 10: “Summary” up to page 961)

Summary

Synchronization

• Shared memory based synchronization

• Flags, condition variables, semaphores,
conditional critical regions, monitors, protected objects.

• Guard evaluation times, nested monitor calls, deadlocks,
simultaneous reading, queue management.

• Synchronization and object orientation, blocking operations and re-queuing.

• Message based synchronization

• Synchronization models

• Addressing modes

• Message structures

• Examples

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 958 of 961 (chapter 10: “Summary” up to page 961)

Summary

Scheduling

• Basic real-time scheduling
• Fixed Priority Scheduling (FPS) with

Rate Monotonic (RMPO) and Deadline Monotonic Priority Ordering (DMPO).

• Earliest Deadline First (EDF).

• Real-world extensions
• Aperiodic, sporadic, soft real-time tasks.

• Deadlines different from period.

• Synchronized talks (priority inheritance, priority ceiling protocols).

• Cooperative and deferred pre-emption scheduling.

• Fault tolerance in terms of exception handling considerations.

• Language support
• Ada, POSIX

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 959 of 961 (chapter 10: “Summary” up to page 961)

Summary

Resource Control

• Resource synchronization primitives
• Evaluation criteria for resource synchronization methods.

• Atomicity, liveliness, and double interaction.

• Resource reclaiming schemes
• Basic reclaiming

• Early start algorithm

• Restriction vector

• Resource reclaiming with task migration

• Real-time resource control
• Policy and run-time issues to be considered.

Summary

© 2019 Uwe R. Zimmer, The Australian National University page 960 of 961 (chapter 10: “Summary” up to page 961)

Summary

Reliability

• Terminology
• Faults, Errors, Failures – Reliability.

• Faults
• Fault avoidance, removal, prevention Fault tolerance.

• Redundancy
• Static (TMR, NMR) and dynamic redundancy.

• N-version programming, and dynamic redundancy in software design.

• Reduce & Formalise
• Ravenscar profile.

• Real-time logic.

© 2019 Uwe R. Zimmer, The Australian National University page 961 of 961 (chapter 10: “Summary” up to page 961)

